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1. INTRODUCTION

In order to produce stable solutions using the MACH code ITautz, et. al., 1987J for the Multiple
Interactions in Plasma (MIP) chamber experiment simulations [Morgan, et. al., 1989; Chan, et. al.,
19891, it was found necessary to include a trapped electron model. The physical assumptions and the
numerical techniques used to implement this model are presented in this report.

We first describe the nature of the instability that is encountered in the chamber simulations if the
trapped electrons are absent. The source of this instability is illustrated schematically in Figure 1. The
ion beam enters the chamber at the throat and creates a region of positive charge. This positive space
charge attracts electrons from the neutralizing source near the throat entrance, causing the electron
density to decrease (for strictly one-dimensional motion, the density falls off inversely as the square root
of the potential). On the other hand, the ions are repelled by the positive charge and tend to build up
at the turn-around point, thereby increasing the ion density. These two effects produce a region of
increasing net positive charge which does not stabilize until a wall of positive potential builds up to the
stagnation energy of the ions. At this point, the potential would shut off the beam ion current. Since
this phenomena is not observed in the chamber, it must be an unphysical effect due to the neglect of
some essential physics component.

The MACH program normally proceeds to find solutions by Poisson-Vlasov iteration, i.e. the plasma
is assumed to be collisionless. (The code was designed for space simulations, where this can be a good
approximation.) However, when applied to the MIP chamber simulations, the above instability problem
was encountered. To achieve reasonable, stable solutions, we have included collisional effects for the
electrons. That is, we assume some electrons will scatter into the potenial energy well that is created
by the streaming ions, and quench the unstable region of positive charge. We further assume that the
electrons establish an isotropic equilibrium within the well, with temperature equal to that of the Vlasov
(untrapped) electrons. The details of this trapped electron model are described below. In section 2, we
outline the "usual" method of obtaining density in MACH by means of inside-out trajectories and velocity
space quadratures. This serves to introduce the basic equations and notation. In section 3, we describe
the modifications which enable us to calculate the density of the trapped electrons. An approximate
expression for the untrapped population is also given. Density normalization of the untrapped
component is determined by equating ion and electron fluxes in the source region. The normalization
constant for the trapped component is essentially a free parameter of the model. In section 4, we give
some numerical results for the model for MIP experiment simulation. The conclusions are presented
in section 5.
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Figure 1. Schematic of instability in electrostatic potential
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2. THE INSIDE-OUT METHOD

In the MACH program, the dimensionless particle number density n = N/N* is calculated by a velocity
space integral over the distribution function f(v-) at every point " of the spatial grid

n = fJfJ f(v)dF

= JJ4 f(vO,0)V2 dv dQ

where dD is the solid angle element

dQ = sin (0)dO do

We now make a transformation from velocity v to total energy E, given by

E - mv2 + qV
2

where V = V(r) is the local electrostatic potential. By differentiating this equation, we get

dE =mvdv

so that

v 2 dv = v/mdv =211m-312(E - q V ) 1/

and the density integral goes into

n = 21/2m-3C fff(E,O,.O)(E-qV)"tdEdQ

By Liouville's theorem, the distribution function is constant along a particle trajectory, so that by
following time-reversed tracks to infinity, we can obtain f(E, 0, 41) = f, If we now specialize to a
drifting Maxwellian distribution at infinity, we can write f_ as

f_ = (m/(2nkT))1 2exp(-X)

where the exponent has the form
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' )2/kT2

= e+M 2 -2el/ 2 .M-cos(O.)

and

1V. = track velocity at infinity

0. = track polar angle at infinity

= source flow velocity at infinity

e = E/kT =1 m(_)2 IkT
2

M = v./(2kTIm) 1/2 = Mach number

Using these variables, we can write n as

n = 1 n- 2 f f fexp(-X)(e- x)'/2 de dQ
2

where x = qV/kT is the dimensionless potential energy. This is the expression used in MACH to
calculate density by means of quadratures. In order to evaluate the integrand of the triple integral,
particles are tracked backwards in time to the source to obtain 0,. and hence f. (any particles hitting
objects contribute zero density). This tracking must be done for each value of e, 0, 4 with sufficient
precision to resolve the distribution function over all energies and Pr solid angle. (In practice, we have
developed the VSTS method so that these orbits may be selected efficiently.) What is of interest to us
here is the energy range for the particles.

Figures 2 and 3 depict the energy diagrams for repulsive and attractive potentials. The horizontal lines
show typical energy bins for tracking, which are set to span, with sufficient accuracy, the Mach energy
M2 at infinity. The kinematic constraint that the kinetic energy k e - X be greater than zero sets
the integration limits on total energy:

repulsive potential (X >0) : 0 < <
attractive potential (x <0) x < e <

Although the total encrvg range X to 0 is kinematically allowed for attractive potentials, it is normally
excluded from the MACH calculations because such orbits cannot connect to infinity, i.e. they are
energetically trapped. The only way that these orbits can become populated is by collisions. The
trapped electron model fills in this kinematic region with an approximate equation, which is described
in the next section.
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3. THE TRAPPED ELECTRON MODEL

It is convenient to make a transformation from e to kinetic energy k as the integration variable, then
the density integral becomes

n= n-Y2fffJexp(-X)kV2dkdQ
2

where the integration limits on k are

repulsion: 0 < k < 0
attraction: 0 < k < w for trapped particles

w < k < , for Vlasov particles

where w= -x > 0 is the dimensionless well depth. The variable k is also indicated in Figure 2.

For attractive potentials (Z < 0) we can build a trapped particle model for the kinetic energy

range 0 < k < w by making two assumptions:

1) The source is isotropic (M - 0). Hence, X = e = k + x and the density integral becomes

n I= -V2 exp(-X) if exp(- k)k2dkdO
2

2) All particles escape. Thus, we can integrate over solid angle so that we have ff dO = 4nr.

Putting these two assumptions together gives

nt = exp(-X) • a(w)

where we define

a(w) = 2-It"2owexp(-k)kl2dk

In the above equations, we have implicitly assumed that the temperature of the trapped and untrapped
populations are the same. '[lhis is an approximation, since the higher energy particles are preferentially
scattered out of the well, leaving a lower temperature for the trapped component.

To illustrate our normalization, consider for a moment the case of repulsive potentials (X > 0). The
only change would be that the limits on the k integration would be 0 to . and we would have
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a (o) = 2 4,-1 2)=.

so that we would recover the Boltzmann equation for electron density.

We can also, in this manner, make a crude approximation for the Vlasov electrons in the
range w < k < 00. We here keep assumption 1) above, but weaken 2) to: the solid angle for escape
is independent of k. This gives

,k = exp(-x) ' P(W) "ge

IP(w) = 2r - 2 fexp(-k)kt2dk

The quantity 9e is the solid angle normalized to 4r

ge= ff dQ/(4n)

which is also equivalent, for an isotropic source, to the neutral particle density. This type of
approximation works best, of course, for straight line tracks, i.e. for high velocities and weak electric
fields. Since a (w) + 13(w)- 1 , we can write tk in the form

= exp(-x) - (1 - a(w)) g,

This expression is very approximate. However, in our MIP simulations, it makes only a small
contribution over most of the chamber (since g. drops off as 1/r2) and we have used it because it avoids
the large CPU time required to track the Vlasov electrons.

In the above treatment, the electron density is normalized to 1. at the source, which is the same as for
the ion density. This is the correct boundary condition for space conditions, but is not a good
approximation for our plasma chamber simulations. There, we have an ion thruster which produces a
plasma stream at the front of the chamber, and a hot wire filament located just in front of the ion gun
which provides isotropic electrons by emitting an approximately equal current. 'Ilhus, we have used a
current balance condition to set the normalization of the electron density. We write the total electron
density as n = nt + n, where



t = -•exp(-x) a c(w)

-=, exp(-x) (1 - a(w)) • 9,

Here, ct and c, are separate normalization constants. 'he value of c, relative to the ions is determined
by approximate flux balance at the source region:

Fluzi = Ni *v. = Flux, = 1/4N e . e

and therefore

, = NeIN - 4vs/v = 2,lt1A (T/Te)la (m,/mj)" 2

where M i = vsivi is the ion Mach number, T,, T are temperatures, mi, me are masses, and v., vi are

thermal velocities (equal to (2k'T/m) /) and "ye = 2n-1t 2 ve denotes average velocity. Assuming the

potential is zero at the source, the constant ct is undetermined by this condition, since at(0) = 0. This
constant is thus a free parameter in our model. Since the trapped electron source is indirectly that of
the neutralizing filament, we expect that ct would be some fraction of c,.

4. NUMERICAL RESULTS

In order to show the effects of the model, we have integrated the function a(w) for various well depths.
This trapping function a(w) is given in Figure 4. We can see that the function rises rapidly from zero
to one in about 6 kT,. In Figure 5, the trapped electron density nt calculated assuming unit
normalization is shown. This curve shows an even faster rise with respect to w due to the exponential
factor ezp(w). It is apparent that it only takes a potential well of a few kT. depth to produce electron
densities comparable to that of the ions. 'This is the mechanism by which positive space charge at the
throat of the chamber is effecuvely neutralized. Without this strong negative trapped orbit contribution
to the density, one tends to get an unrealistic and unstable build up of positive charge.

To illustrate the numerics, we show below some results for the MIP simulation with -5KV probe. The
measured electrostatic potentials are shown in Figure 6. The spherical probe is situated at Z = 1.0, R
= 0., behind an uncharged front disk centered at Z = 0. We see that experimentally, the potential drops
off from high negative values near the probe to zero, and then goes positive. We interpret these positive
potentials as due to the trapped electrons in balance with the streaming ions. The potential is
approximately +4 Volts at the upstream side of the disk. The 4 Volt contour follows the drift direction
downstream (toward positive Z) on both sides of the probe. For the MIP experiment kT, = 5 e V, and
this cortour corresponds to a dimensionless well depth of about w = -v = 45/. From Figure 4. we
see that this gives a trapping fraction of -0.35, and from Figure 5, an un-normalized electron density of
-0.75.
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Figure 6. MIP potentials measured with an XY emnissive probe
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For Argon (40 AMU) flowing at approximately Mach number 3, the current balance condition yields

c = 271 ,2 *3*21/(40*1832) 1/2 - 0.06

TIhe normalized trapped electron contribution, assuming ct = c, would be

nt - 0.06 * 0.75 - 0.05

This is of the right order of magnitude, but as expected, is found to be too high to match the ion density
at this point. To fine tune the problem, we have taken the value of the free parameter ct to be less than
CV, the approximate percentage being determined by the best fit to the measured data. Figures 7, 8, 9,
and 10 show the Poisson solutions with fixed ion density and a floating trapped electron term, and with
normalization set at 20, 30, 40, and 50% of c,. These Figures indicate the sensitivity of the solutions to
the trapped electron normalization constant. As the normalization factor is increased, a shallower
potential well is required to bring in the same negative charge, and the positive potentials thereby tend
to decrease, as can be seen in Figures 7 to 10. It appears that a value of 30% gives the best match to
experimental values around the region of the probe, although a precise comparison cannot be made due
to the observed asymmetry in measured potentials. Since MACH is an axisymmetric code, this
asymmetry does not appear in the simulations.

5. CONCLUSIONS

In our MACH simulations of the MIP experiment, we have found that the neglect of electron collisional
effects leads to unphysical build up of positive charge near the throat of the chamber. We have described
a trapped electron model which we have developed to suppress this positive charge. Physically, we
assume that chamber electrons can scatter into the potential well created by the ion space charge. The
electrons thermalize, with temperature equal to that of the untrapped electrons. The numerical effect
of the algorithm is as follows: Whenever the local potential goes positive, that region receives a flood
of negative charge due to electrons that fall into the potential well. This quenches any unphysical build
up of positive potential. The well depth adjusts so that a self-consistent Poisson-Vlasov solution is
obtained. The model contains one free parameter which is the normalization constant for the trapped
electron density. The method requires the calculation of numerical quadratures, but no particle tracking.
'[his trapped electron model has beer' applied to the MACH simulations of the MIP chamber
experiment, and enables us to achieve stable solutions with potential distributions that are close to the
measured ones.
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Figure 7. MACH simulation potentials. 20% tr-apped electrons
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Figure 8. MACH simulation potentials, 30% trapped electrons
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Figure 9. MACH simulation potentials, 40% trapped electrons
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Figure 10. MACH simulation potentials. 50% trapped electrons
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